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Introduction

THE problem of the aerodynamic behavior of infinite
swept wings in incompressible flow is well known and

appears in textbooks dealing with the aerodynamics of wings.
Using thin-airfoil theory and comparing cross sections that
are parallel to the freestream direction with cross sections that
are perpendicular to the span wise direction, the following
conclusion is reached: the lift curve slope of cross sections,
parallel to the freestream direction of infinite swept wings, is
reduced by a factor that is equal to the cosine of the sweep
angle. This result appears in different excellent text books, of
which Refs. 1-3 are outstanding examples.

When these results are examined, one is frequently faced
with the problem that although the derivation is clear and
correct, there is not any convincing physical explanation to
this reduction in the lift curve slope that is an inherent
property of the two dimensional profile. Therefore, the fact
must be accepted although there is no satisfactory ex-
planation.

The purpose of the present note is to introduce another
point of view of the behavior of infnite swept wings. Ac-
cording to the present explanation, the reduction of the lift
per unit length of the wing is not due to a reduction of the lift
curve slope of the two dimensional profiles, but is due to
reduction in the effective angle of attack of each cross section.
This reduction in the effective angle of attack is a result of
changes in the vorticity field of the swept wing (compared to
the unswept wing) that result in changes in the velocities
induced over the wing.

Theoretical Derivation
In Fig. 1, an infinite swept wing is shown. Three different

systems of coordinates are defined. The first system is the x-y
system, where (7, the freestream velocity, is in the x direction.
Using the classical vortex theory, the swept wing is
represented by a vortex sheet covering the wing projection
onto the x-y plane. The second system of coordinates is the £-r?
system. This is a local nonorthogonal system of coordinates
where £ is parallel to the x coordinate, while r? points in the
spanwise direction. If A is the sweep angle, then (see Fig. 1)

The third system of coordinates is the f-/x system. The direc-
tion of jit is identical to that of 17, while f is orthogonal to pt.

In the present problem, one can think of two kinds of cross
sections. It is possible to take cross sections that are parallel to
U. These cross sections have a chord c (see Fig. 1) and angle of
pitch a. The second kind of cross sections are those that are
perpendicular to the spanwise direction of the wing (they are
in the f direction). The chord and angle of pitch of the second
kind of cross sections are c and a, respectively. It is clear from
simple geometric reasoning that (for the case of small a):

(2)

The vortex sheet is described by its two components, ya and
da. ya is the circulation per unit distance in the x direction
taken about the positive y direction. da is the circulation per
unit distance in the y direction, taken about the negative x
direction. At any point of the wing,

dy dx (3)

Since the wing is infinite, it is clear that, at all the cross
sections parallel to U, the distributions of ya and da are the
same. This means that ya and da are functions of £, but not
functions of 17. Using Eqs. (1) and (3):

dx dx dx

dg dya dr]
dy drj dy

Integration of Eq. (4) with respect to £ implies

(4)

(5)

Equation (5) indicates that ya and da can be replaced by a
resultant vorticity e that is directed in the positive 17 direction.
If e is measured per unit length in the f direction, then

(6)

The velocity that is induced by the vortex sheet at each point
of the wing, perpendicular to the x, y plane, is denoted w. It is
clear that since the wing is uniform and infinite, the chordwise
distribution of w (along c or c) is the same for any cross
section of the wing. The pattern of induced velocities must
meet the linearized boundary condition

=x—jtanA r/= (1)
Ua= w (7)
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The chordwise distribution of ya and <5a must induce a velocity
that satisfies Eq. (7). In addition, they also must satisfy the
Kutta hypothesis at the trailing edge. Equation (7) can also be
written in a different form:

((/cosA) (a/cosA) = (UcosA)a = (8)
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Fig. 1 General description of the problem.

The vorticity distribution e which satisfied Eq. (8) (and also
satisfied Kutta's hypothesis) is well known and is the chord-
wise vorticity distribution of a two-dimensional profile
positioned at a pitch angle 5;, while the freestream velocity is
(/cosA. We have obtained here the equivalence between an
infinite wing that is swept at an angle A (where the cross
sections parallel to the freestream velocity have a pitch angle a
and chord c) and an unswept wing (where the freestream
velocity is t/cosA, the pitch angle a/cosA, and the chord
ccosA).

For any cross section of the wing, the chordwise vorticity
distribution v per unit length is given by the so-called flat plate
chordwise loading:

(9)

As shown in Fig. 1, (/is the planar freestream velocity, aeff is
the effective angle of attack, and x is a nondimensional
chordwise coordinate that originates at the midchord and is
equal to - 1 and 1 at the leading and trailing edges, respec-
tively. If Eq. (9) is applied to a cross section perpendicular to
77, then

V= (/cos A aeff = a = a /cos A v

For a cross section parallel to U

(10)

(11)

Substituting Eqs. (10) and (11) into Eq. (9) and using Eq. (6)
imply that aeffx (the effective angle of attack of cross sections
that are parallel to U) is given by

cteffx = acosA (12)

Fig. 2 Discretization scheme.

Equation (12) indicates that in the case of swept wings, if
cross sections parallel to the freestream velocity are con-
sidered, the effective angle of attack is not the pitch angle a,
but is given by Eq. (12). // is not the sectional lift curve slope
that is changed owing to the sweep, but the effective angle that
is reduced by a factor of cos A compared with the geometric
pitch. This change in the effective angle of attack is a result of
the changes in the vortex sheet compared with the case of
infinite unswept wing. These changes include a relative
translation of the cross sections and the presence of the
chordwise vorticity component da. This concept of in-
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Fig. 3 Influence of the segment dimensions
on the accuracy of the calculations.
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troducing the effects of changes in vorticity distribution
(compared with the case of infinite uniform wing) by changes
in the effective angle of attack is well known and accepted.
Such an approach is used, for example, in the classical lifting
line models of finite wings.

The Discrete Model
In this section, a discrete model of an infinite swept wing is

derived and solved. The discrete model also helps to prove
that it is not the lift curve slope that is changed owing to the
slope. The wing is modeled as a series of shifted rectangular
segments, as shown by the broken lines of Fig. 2. The width of
each segment is d, while its length is the chord c. The problem
is solved by using the vortex lattice method. Therefore, the
whole vortex sheet is represented by the thick "stairway
shape" vortex line, as shown by Fig. 2. According to the
vortex lattice method, the boundary condition is reduced to
the requirement of nonpenetration of the resultant flow
through the control point, which is positioned at the three-
quarters chord point of the middle chord of the segment. The
reason for choosing the three-quarters chord point as the
point where the boundry condition should be satisfied is its
exactness in the case of a two-dimensional airfoil with lift
curve slope 2?r. Therefore, in cases where the lift curve slope is
different from 2?r, this scheme should result in increasing
errors in the calculations.

The lift per unit length in the y direction, Z>, can be ex-
pressed as follows:

= L0/k (13)

The exact analytic expression for k (in the form of an infinite
series) is given in Ref. 4. Figure 3 shows k as function of die
and A. It is shown that as die approaches zero, k approaches
unity, and the correct value of L0 is obtained. This means
that, although the wing is swept, the lift curve slope remains
2?!-. On the other hand, as die increases, an increase in L by a
factor of 1/cosA is asymptotically approached. In this case,
an artificial correction factor of cosA in the lift curve slope is
required.

Conclusion
As the result of the sweep of an infinite wing, the field of

induced velocities over the wing is changed. This change is a
result of a relative shift of the cross sections in the freestream
direction and the appearance of vorticity components in the
same direction. From the point of view of the two-
dimensional behavior of the cross sections, it is better to
describe the influence of sweep as a change in the effective
angle of attack. This approach is equivalent to the classical
method of the lifting line, when dealing with finite wings.

The correction in the effective angle of attack is more
consistent and has better physical explanation than a
correction in the lift curve slope of the profile. This is shown
even more clearly in the case of a discrete model of the infinite
swept wing.
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Introduction

THE Influence Function Method (IFM)1 is a new
technique for the prediction of store loads within an

aircraft interference flowfield. A major step in the IFM
procedure involves calculating the "influences" various
segments of the store body have on the total forces and
moments of the store. This process, known as "store
calibration," requires that the total store forces and mo-
ments, as well as the local angle-of-attack distributions along
the store length, be either calculated or measured at several
axial positions as the store is traversed through a known "cali-
bration" flowfield. The difficulty and expense involved in ob-
taining these force, moment, and local angle-of-attack distri-
butions have been the major limitations of the IFM.

Typically, two approaches have been taken. In the first
approach, a wind tunnel test is conducted in which a model of
the store to be calibrated is traversed near a body that creates
a known flowfield (supersonically, this may be done by
traversing the store through a two-dimensional wedge shock
wave; subsonically, determination of the known local flow
angles is more difficult). This method requires wind tunnel
support which is expensive. The second approach to store
calibration involves theoretically calculating the total store
forces and moments at several axial stations within a
theoretically modeled flowfield (typically, calculations are
required at 15-20 store axial positions in the flowfield). The
PANAIR code2'3 is the state-of-the-art computational tech-
nique usually used to obtain these force and moment predic-
tions. However, PANAIR predictions at 15-20 locations are
relatively expensive4 and, therefore, are generally not very
attractive (they would use approximately 75 min of CPU time
using the version of the PANAIR Pilot code installed on the
AEDC Amdahl 5860 computer).

Since neither dedicated calibration testing nor high-order
computational aeropredictions are desirable from a cost
viewpoint, an engineering methods prediction technique—the
AEDC Interference Distributed Loads (IDL) code5—has been
modified to predict store force and moment coefficients along
an axial traverse through a simple calibration flowfield. IDL
predictions were made for both the generic planar wing
weapon (PWW) and the GBU-15 CWW stores at a total cost
of 6 s of Amdahl CPU time. This represents a three-order-of-
magnitude cost reduction over PANAIR calibrations.
Preliminary comparisons of F-15 right inboard pylon
flowfield predictions and grid loads on the PWW and GBU-
15 stores in that flowfield indicate that the IDL-produced
influence coefficients provide very accurate grid predictions
which agree well with predictions derived from influence
coefficients determined by calibration testing.
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